Toyota D-4 (3S-FSE) - регулируем заслонку

D-4 - регулируем заслонку

02.01.2006

Учитывая , что информации по регулировке электронной заслонки моторов 3S-FSE немного, а также, базируясь на материале, любезно представленном Антоном (12 volt), и Владимиром Петровичем на основе практики регулировки можно предложить (на мой взгляд) еще один вариант .


В обеих статьях приведены варианты регулировок для одной модели мотора , но , как известно , он выпускался в нескольких модификациях в зависимости от модели машины и от года выпуска. Иными словами , например параметры первой статьи (учитывая высокую точность изготовления узлов) более пригодны для реальной жизни. “Считать витки резьбы “ не надо - достаточно замерить выход винтов над плоскостью штангелем. Это точно и быстро, а самое главное – годится для ремонта. В реальном ремонте время тоже имеет значение.


Во второй статье более кропотливая регулировка по сканеру и вольтметру с народными значениями вроде 0.669мВ и подобными , выставить которые можно только “верными руками” на слух и на нюх. Причем результат достигнут – но какой ценой – целый день. Повторить его намного сложней, чем практический вариант у Антона.


Что же делать , если нюх подводит, а руки не могут попасть в 0.669 mV , так и норовит 0.7 В ,как не крути. Попытка изучить , как оно там все это крутится – вертится , а также магические числа с тремя знаками , которые так и не давали спать, подтолкнули к мысли – не может быть !
Ну не может быть, чтобы эта система автоматического регулирования (САР) не работала (пусть условно) при напряжении 0.7 вольт .


Насколько известно – в любой системе с обратной связью есть коэффициент устойчивости , иными словами – коридор (петля гистерезиса) , в котором параметры считаются неизменными. Система не переходит из одного состояния в другое случайно – иначе возникает резонанс (разрыв петли регулирования) или уход в крайние значения .


Простой пример – реле. Напряжение срабатывания выше чем напряжение отпускание . Так сформирована петля гистерезиса , в зоне которой ничего не происходит. Поэтому система стабильна. Иначе мы бы получили постоянный “дребезг контактов” . Подобное реализовано и в электронике, например, логические микросхемы – это уровень сигналов. Постепенно перебираясь к машине , мы видим это на примере TOYOTA в сигнале на АКПП . Если TPS аналоговый прибор , линейный и непрерывный , то сигнал для АКПП не должен иметь такую форму , иначе пороги переключения будут без петли гистерезиса, и можно было бы на определенной скорости добиться постоянного переключения передач с одной на другую и обратно до бесконечности. По форме этого сигнала можно увидеть – что напряжение меняется приращениями , или ступеньками . Напряжение одной ступеньки и есть петля гистерезиса для каждого уровня. В зоне этой ступеньки оно считается неизменным.


Пример сигнала ТТ (АКПП) оцифрованного ECU c TPS:


arid_fse_1.jpg


фото 1


И если мы прочертим линии , соединяющие ступеньки с верху и снизу , то получим коридор. Это принцип работы всех цифро-аналоговых преобразователей ( судя по количеству уровней квантования) , стоит 4 разрядный АЦП с комбинациями

от 0000 , 0001, 0010 …… до 1111 состояний шины . Возможно, что в заслонке 3S-FSE стоит АЦП с большей разрядностью (точностью) , но во любом случае принцип такой же.


Исходя из этого можно сделать вывод (и он подтверждается) – "коридор" в регулировке TPS есть, мотор будет работать не только при напряжении VTA 0,669 В но и при 0,7 В тоже . Если быть точным – то коридор намного больше.


Вторая причина поиска – что делать , если сканера нет , или он не “читает “ дату , тогда подобная настройка вообще не применима .


Третье – что делать , если разные модели и параметры одной никак не подходят для другой ?


Для начала ограничим круг поисков и входных переменных в виде неизвестных величин.

А именно – назовем узлы немного по другому .


Вследствие того , что APPS (датчик положения педали) не подлежит регулировке , его для ясности исключаем сразу. Какая бы модель не приехала – в любом случае он есть как есть, крутить – вертеть там нечего , кроме одного: проверить плавность нарастания напряжения на предмет обрывов токоведущих дорожек стрелочным вольтметром.


Упорный винт дроссельной заслонки, имеет абсолютно схожее назначение с любым другим упорным винтом любой другой заслонки в т.ч и карбюратора . Его единственное назначение – ограничить ход заслонки до полного закрытия без подклинивания в корпусе.


arid_fse_2.jpg


фото 2


Как мы видим из конструкции – при закрытой заслонке до упора (прижимаем пальцем) , заслонка не должна клинить в корпусе дросселя, а закрываясь полностью - упираться ограничителем в этот винт.


Методика регулировки –

- закрываем заслонку вручную толкая ее пальцем предварительно выкрутив упорный винт

- Начинаем вкручивать этот винт до начала открытия заслонки.

- Проверяем на отсутствие подклинивания.

- Затягиваем контргайку. Все – можно закрасить резьбу маркером.


Это можно сделать и на машине, не снимая корпус дросселя, если заслонка горячая (мотор работал) то лучше толкать ее деревянным карандашом , чтобы не обжечь руки и не повредить алюминиевый корпус.


TPS – основные сложности с ним . Для начала фикcируем TPS строго по середине его регулировочных пазов. Подключаем разъем к нему и смотрим напряжение .

На выводе 1 (верхний) – 5 вольт . 12 вольт там быть не может .


Второй сверху (VTA) – ограничимся одним каналом (они синхронны)

Смотрим напряжение VTA простым мультиметром на пределе 20 вольт (два знака после запятой лучше воспринимаются чем три :)


Напряжение может быть разным , но в любом случае – оно близко к эталонному – так как на исправном авто все регулировки где-то в середине. Для точности и повторяемости результата (обязательно !!!) напряжение VTA следует проверять при прижатой заслонке с отключенным мотором привода.


Алгоритм:

- Подключаете разъемы APPS и TPS , разъем под TPS на мотор привода отключен.

- Включаете зажигание

- прижимаете пальцем заслонку и смотрите напряжение VTA


TPS также проверяется на обрыв дорожек как и APPS перед этим

Допустим, Вы увидели 0.63 В – ставьте 0.6 разворотом TPS

Какая-то заслонка показала 0.52 – ставьте 0.5 , а третья 0.46 В , ставьте 0.45 – ближайшее до округления. Работать будет и при 0.46 , и даже при 0.4 В, а вот при 0.35 будет ошибка .


Поэтому важно сначала точно отрегулировать упорным винтом полное закрытие заслонки , а потом выставить в среднее положение TPS – так Вы найдете почти точно и сразу середину петли гистерезиса САР. Фиксируете TPS.


Прижимать заслонку и снимать показания VTA рекомендую для абсолютной стабильности результатов (и их предсказуемости), иначе в процесс измерения вмешивается следующий участник (ниже по тексту) – а это уже две неизвестных величины , что полностью сбивает с толку и заставляет некоторых владельцев крутить все подряд , в т.ч все винты и TPS сразу, а это приводит только к отрицательным результатам, хотя "отрицательный результат – это тоже результат"?

Остался один винт


Можно назвать его по другому – например не упорный винт дроссельной заслонки (она в него никак не упирается) .


arid_fse_3.jpg


фото 3


А , например , винт начального угла открытия дроссельной заслонки. Этот винт давит на пружинный узел , формирующий начальный угол открытия заслонки . Он никак не связан с APPS . Начальный угол открытия – это когда заслонка приоткрыта при выключенном зажигании или снятом разъеме с мотора привода. Этот угол сохраняется при работе двигателя на холостом ходу. Путем пятиминутных экспериментов было выяснено , что точность установки этого угла влияет также на уровень прогревных оборотов . Контролируем этот параметр все по тому же VTA с отключенным сервомотором и не прижимая заслонку в закрытое состояние.


Алгоритм:

- разъемы APPS и TPS подключены , сервомотора отключен

- включаем зажигание

- подключаем тот же вольтметр к тому же разъему VTA (или он уже подключен)

- закручиваем или откручиваем винт начального угла заслонки для получения разности VTA- С (заслонка свободна) и VTA – З (заслонка прижата – закрыта) 0.1- 0.15 вольт .


Пример – VTA- З 0.5 В, VTA-C 0,65 В, или VTA –З 0.6 В , VTA-C 0,75 В итд

Насколько точно Вы “попали “ в диапазон – убедитесь после прогрева мотора и установлению 650 rpmпо напряжению VTA - оно должно быть близким к VTA-C

Обнуляете ECU и заводите мотор , после прогрева смотрите обороты .


Допустим Вы выставили разницу VTA-CVTA-З меньшую , все будет работать, и переход в compressionon lean будет , но заводиться мотор будет только на горячую. Утром вам придется для запуска нажать педаль газа .


Как проверить точность своих регулировок если нет сканера - опять же вольтметр с двумя знаками после запятой может решить этот вопрос.

Прогреваете мотор и сравниваете на ХХ показания VTA на работающем моторе и заглушенном , при отключенном моторе привода . При точной настройке они рядом или совпадают разницей 0.02 В


Глушите мотор и снимаете разъем с датчика температуры на ECU , подсоединяете к разъему резистор 2,2 кОм ( это около 20 град ) . Заводите – проверяете обороты “ прогревные “ 1500 – 1700 rpm (на горячем моторе) . Если для Вас это много , то уменьшив разницу и обнулив ECU вы можете несколько снизить прогревные обороты – вроде режима “ ЗИМА – ЛЕТО “ на карбюраторах с термопрогревом в системе запуска .


Но это уже эксперимент , при котором можно “добиться” check engine


Определить , переходит ли мотор в COMPLEAN можно по сигналу OX1 / VF1 в диагностическом разъеме под капотом , с помощью вакуумметра или сканера (если он есть)

ПРАКТИЧЕСКИЕ ВАРИАНТЫ РЕГУЛИРОВОК


  1. CORONA PREMIO 96 г (видимо из первых) с таким насосом , диагностический разъем только под капотом , по самодиагностике ошибок нет (E1-TE1)рядом лежит “диагностический сканер” в виде проволочной перемычки.


arid_fse_4.jpg


фото 4


Не заводится никак, кроме подачи топлива во впуск со шприца. На электронной заслонке откручены все винты (как и на моторе), ТНВД новый , в моторном отсеке , похоже, " произошел термоядерный взрыв". J

Со слов владельца – не заводится после замены ТНВД.


Смотрим сигналы на форсунках (100 вольтовый усилитель под сиденьем водителя)


arid_fse_5.jpg


фото 5


Импульсы амплитудой 100 вольт есть, но длительность при прокрутке стартером оставляет желать лучшего (меньше 2х мс)Этого явно не достаточно для запуска мотора . Кожухи все сняты давно и кстати оригинально – для тех, кто меняет ремни ГРМ на таких моторах и устал от дальнего болта крепления кожуха пластиковой крышки , а также того, что ее не снимешь, без демонтажа подушки опоры двигателя вместе с кронштейном – не тут то было !!!

Народные умельцы доработали этот узел !! - см. фото:


arid_fse_6.jpg


фото 6


Теперь для проверки меток ГРМ , нужно проделать всего три простых шага J


А вот такой “тюниг” воздушного фильтра делать не надо , но как вариант для “безбашенных рейсеров” – как из стокового фильтра сделать "нулевик" ??
Ответ прост – берете сток, поливаете бензином и поджигаете , пока ме
cтами дырки не появятся – "нулевик готов" .

Главное вовремя потушить , иначе можно испортить L


arid_fse_7.jpg

фото 7


Добираемся до ECU , он достаточно удобно расположен и смотрим сигнал на выходе датчика давления топлива в рейке.(высокое давление)


arid_fse_8.jpg


фото 8


Это розовый провод. Напряжение на нем 5 вольт при включенном , пять вольт при прокрутке – вообщем неисправен.
В литературе Издательства "Легион – Автодата" мало написано про то, как его проверить.

Да и вообще, даже в "мануалах" этот вопрос как-то "тихо обходится стороной"...

Написано, что при подаче напряжения на датчик , на его выходе должно быть нулевое напряжение . Но это не способ проверки для схем , реализованных в нем .
Очевидно , что сам датчик содержит измерительный элемент , преобразующий давление в напряжение , а также оконечный каскад , выполненный по схеме ОК (открытый коллектор – или схема с общим эмиттером)


arid_fse_9.jpg

фото 9


Питание 5 вольт, сигнальная земля и выход – все в трех контактном разъеме датчика.
Естественно, что просто проверить датчик со снятием не удастся – во первых , надо сформировать давление , во вторых - подать питание и в третьих – сформировать нагрузку для схемы с
OK (сам по себе такой каскад напряжение не вырабатывает)

Тогда схема входного усилителя ECU должна выглядеть так, где R1 является нагрузкой для инвертирующего усилителя VT1 а также делителем опорного напряжения для OY1


arid_fse_10.jpg


фото 10


Тогда при подаче питания через резистор R1 начинает течь ток по цепи источник питания 5V
(внутреннее напряжение ECU , R1, R2 – общий .)

Таким образом формируется смещение на входе усилителя
OY1 5 вольт (так как входное сопротивление усилителя очень большое , то втекающим током OY можно пренебречь). В нормальном режиме работы это смещение поступает на коллектор транзистора выходного каскада датчика VT1 , и транзистор , открываясь шунтирует резистор R2, тем самым понижая напряжение на входе OY . Максимальному напряжению 5 V на входе OY1 соответствует максимальное давление в топливной магистрали . При этом ECU закрывает форсунки на столько, что запуск мотора не возможен ( ориентируясь по давлению ), но реальное давление намного ниже.Учитывая, что датчик давления не то, что снять – увидеть не просто , для проверки разрезаем провод (сигнальный с датчика) и через подстроечный резистор заземляем , включаем зажигание и выставляем резистором 2,2-2,5 вольт – заводим двигатель – он заводится и работает на прогревных оборотах.

Для окончательной проверки придется снять разъем с датчика и проверить напряжение на нем , а особенно сигнальный провод. Если все в норме – меняем датчик. В данном случае проблема была в уплотнительной резинке разъема – она не позволяла защелкнуть разъем на датчике ( больших усилий не приложить из-за ограниченного пространства)

После этого регулируем
ETCS

Параметры
VTA (З) 0.5 VVTA (C) 0,65V , после прогрева в STICH заслонка “стремится” к 0.63 V , в ULCM переходит .
На такой модели с
DLC1 под капотом проверить работу в Ultra Lean Combust Mode легко вольтметром на контакте VF1
 

А вот на CORONA PREMIO 2000 года с насосом такого вида :


arid_fse_11.jpg


фото 11


После всех настроек ETCS пришлось дополнительно адаптировать заслонку используя перемычку (или сканер в режиме ete1)

Полученные режимы при
VTA (З) 0.6V VTA (C) 0.65V К этой модели (DLC3) удалось подключить сканер и проверить показания THPS – 15.8 % (по руководству должно быть в диапазоне 14.6 – 16.0 %)

Некоторые отличия

Ошибка возникала после включения зажигания или работы ДВС через 10-15 сек.

Стираем ошибку на работающем моторе , глушим двигатель.

Включаем зажигание и пока заслонка работает, нажимаем до упора педаль газа .

Замыкаем в диагностическом разъеме
DLC3 контакты – check мигает , ждем пару секунд .
Отпускаем педаль газа - плавно...

Выключаем зажигание

Вытаскиваем перемычку

Ждем 10 сек, заводим , смотрим работу ДВС по сканеру


Если регулировка точно выполнена , то угол открытия заслонки (по сканеру) в
STICH около 15 град , а по напряжению VTA близок к установленному VTA (C)
Не мешает проверка запуска на “холодную “ путем подключения резистора 2,2 кОм в разъем датчика температуры
ECU , так как ждать летом естественного охлаждения ДВС долго, а убедиться в работе ETCS надо сейчас.

Гаджиев Арид

© Легион-Автодата


Диагност Арид Омарович ( SKYLINE77 на нашем Форуме)

город Москва

Контактный телефон: 8 926 52 56 300

наверх